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ABSTRACT 
 
The main purpose of this paper is to reconcile my previous work on the modified 
Jensen alpha¹ methodology with the Stochastic Portfolio Theory as presented in 
Fernholz (2002). From the standard stochastic model, inclusion of the alpha 
enhanced method will show that it is possible to perform better than a market 
average or index fund (be it ranked by capitalization, Sharpe ratio or constant 
weights). The alpha feedback process will not only improve performance, it will 
also give the ability, to a certain degree, to better control a portfolio. 
 
No attempt is made to make an exhaustive proof of every assertion in this paper 
as the goal is not to produce an academic paper but to show that Stochastic 
Portfolio Theory (SPT), just as the Capital Asset Pricing Model (CAPM), can be 
used as stepping stones to higher portfolio performance. On the other hand, 
every attempt will be made to follow as closely as possible the mathematical 
notation as used in most of the academic papers I’ve read on this subject (see 
references for a partial listing).  
 
This paper at first presents an overview of the stochastic differential equation 
model as used in SPT. Then, the alpha accelerator is added to the portfolio 
process in order to improve performance. It is followed by a description of the 
trading environment and procedure implementation.  
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1. The Stochastic Model 
 
A stochastic representation of a portfolio of stocks could start with n + 1 assets 
being traded continuously. One asset being a bank account with a value process 

)(0 tS , a terminal time horizon T , and satisfying the following differential equation: 

 
dttStrtdS )()()( 00 = ,   [ ] 0)0(;,0 00 >=∈ sSTt   (1) 

 
where the fraction of capital, in cash or cash equivalent, 0s  appreciates over time 

at the bank’s interest rate )(⋅r  which could be considered, in most cases, as the 

risk free rate of return. 
 
The other n assets are stocks whose price processes satisfy the following 
stochastic differential equation (SDE): 
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where )(tbi  is the stock’s average rate of return (drift process); while )(tniσ  being 

the dispersion (or volatility) rate. )(tW i  represent a standard n-dimensional 

Weiner process with initial values 0)0( =iW , and where random influences can 

be greater than the number of stocks by setting nj ≥ . From equation (2), we can 

define the stock’s “instantaneous” rate of return as: 
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By setting the excess rate of return as: 
 

))'()(,...),()(),()((:)( 1 trtbtrtbtrtbtB nii −−−= + ,      for ni ,...,1=  

 
)(tB  then expresses the risk premium as the rate of return of the i-th stock minus 

the risk free rate. From the Capital Asset Pricing Model (CAPM) is derived the 
reward to risk ratio or the market price of risk )(tθ : 
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We can also look at the process )(tB  as being regulated by market volatility )(tσ  

and market price of risk such that: 
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which can be reformulated as: 
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this in turn is the same as the definition for the Sharpe ratio. 
 
Adapting the above equation to Jensen’s (1968) added alpha formulation would 
result in: 
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where α  would represent the added return due to trading skills, privileged 
information or intuition of the portfolio manager. Jensen was trying to measure 
the knowledge and skill brought to the game by the portfolio manager. All he 
found, on average, was a negative alpha (-1.1%). No wonder it is often put aside 
and that practitioners mostly use the Sharpe ratio metric or its equivalents. 
Nonetheless, the Jensen alpha should be considered as a measure of what a 
portfolio manager brings as skill, knowledge, luck or trading methods to the game. 
And as such, it provides a measure of the performance achieved over and above 
the market’s average. 
 
It is only a small step from here to treat a market portfolio M simply as the sum of 
the individual stocks. Therefore, the sum of the incremental differences in value 
of each of the m stocks in the market will correspond to the total market portfolio 
incremental change:  
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Equation (7) shows that the total incremental change in portfolio value is the sum 
of each stock’s drift, plus the cumulative sum of all their price variations. 
 
All this describes pretty well a portfolio model. In essence, we can represent any 
stock price as a regression line (its drift or rate of change) to which is added the 
cumulative sum of all random price variations. From equation (7), it is easy to 
deduce the average incremental change in portfolio value: 
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As n (number of stocks in a portfolio) approaches m (number of stocks in the 
market universe); the portfolio will tend in value to the average market value: 
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which tends to show that the precepts of the Stochastic Portfolio Theory (SPT) 
will lead to an average performance at best. It is sufficient to pick about 30 stocks 
( 30≥n ) from the universe of available stocks (m) to see expression (9) tend 
asymptotically to one. As if the simple fact of building a diversified portfolio 
condemns the portfolio holder to, at best, an average performance, almost surely. 
 
To outperform, one needs to either make a better selection than the average or 
trade in such a manner as to bring Jensen’s alpha into play. It’s the portfolio 
manager’s expertise that can make a difference and this is where a managed 
portfolio gains or looses relative value when compared to average performance. 
 
Trying to design a portfolio that has for objective to mimic the market average 
can only produce at best a portfolio that tends to the market average. The more 
you tend for average performance by design, the more you will get it. This is to 
say that equation (9) will tend to 1, almost surely, if the n stocks chosen for a 
portfolio tend to mimic the m stocks in the market universe. No one should be 
surprised of such a statement. 
 
Attempting, for instance, to maintain a stable Sharpe ratio )(⋅θ  throughout the life 

of a portfolio is akin to deliberately wanting to underperform. From equation (5) 
long term values for )(⋅σ  and )(⋅r  are relatively stable, this only leaves )(⋅b  to 

provide all the impetus for outperformance. And then, when the number of stocks 
n gets to 30 and above, the tendency for )(⋅b  will be to tend to the average 

secular market return. There seems to be no way out of this conundrum, the 
more you try to beat the averages, the more you get closer to the averages. It 
becomes the destiny of a long term portfolio to approach the secular market 
average asymptotically. The only recourse seems to pick  n  of the stocks that will 
outperform the market averages. And this becomes another problem altogether: 
which stocks should they be? 
 
By time slicing individual trades over the investment horizon, one will also 
observe that as the holding interval, for each trade, gets smaller and smaller, the 
number of trades will not only increase, but also the more and more performance 
will tend to the market average. As a matter of fact, performance will tend to be a 
little less than average due to incurred frictional costs. 
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2. Ordered Performance 
 
Using “order statistics” notation in decreasing order of return for )(⋅b , we can set: 
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It becomes clear from (10) that the only desirable portfolio should be constituted 
of only one stock: )(1 tb  (the one with the highest performance) and that all other 

stocks will underperform this “atlas stock”. Being unable to select )(1 tb  at portfolio 

inception from the available stock universe, in the sense that the probability of 
picking )(1 tb  tends to m/1 , other methods are required for the selection process. 

Selecting a group of stocks having positive expectancy would appear as a 
reasonable alternative not counting the diversification benefits. But still the aim 
should be that the portfolio, when it reaches its terminal time horizon T, should be 
composed of stocks which should have had the highest possible returns )(⋅b . 

However, this can hardly be done since no forecasting method could predict that 
far in the future with sufficient accuracy. 
 
Technically, all one can do is select, the best he/she can, n stocks from the m 
stock universe. Predicting what the price may be in 20 years is beyond the realm 
of any statistical or probabilistic methods. About all one could probably expect 
would be to find a general tendency for averages prices of the whole market 
universe to rise over the long haul. 
 
It might appear sufficient to select n stocks with the highest return from the 
available m stock universe, but even if it could be done, it still would not be 
enough. It would also be required that their weights in the portfolio be in the 
same order of precedence.  
 
This would require that )(tiπ  the weight assigned to the i-th stock in the portfolio, 

be in the same decreasing order as )(⋅b , namely: 
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Now, the task becomes even more complicated. Not only is it required to pick the 
highest performing stocks from a huge stock universe, but also, one has to put 
the heaviest weights on the top performers and tend as much as possible to put 
the heaviest weight on the atlas stock. In a sense, the game is deceptively simple: 
put all your money on the single best performing stock - the “atlas stock” - and 
you have achieved the highest possible return. And should you not be able to do 
so; then do the second best thing: that is to pick a number of the best performing 
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stocks with weights ordered by their relative performance. The portfolio rate of 

return )(⋅πb  would be the ordered weighted sum of stock returns: 
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which would by far exceed the market average being composed only of the 
highest performing stocks with an aggressive stance toward the best performers.  
 
The problem being, naturally, to realize such an objective knowing that price 
movements in the market can be considered as a quasi-random phenomenon. 
How is one to pick the best performing stocks and then assign weights in their 
order of relative performance? This is the real question! At a minimum, should 
one be unable to pick the best performing stocks, then all he/she could do would 
be to select a representative sample from the available stock universe. Then 
some means should be found to weight these stocks to their relative future 
performances. Again from the selected sample, weights should be ordered in 
decreasing order as in equation (11). 
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where )()( 11 tbtπ  would be the portfolio’s atlas stock and )()( tbt nnπ the less 

desirable stock. 
 
 

3. Revisiting the Jensen Alpha 
 
But before going into the details, there is a need to digress and elaborate more 
on the Jensen alpha (6). When Jensen formulated his equation, he saw the 
possibility for a portfolio manager to perform better than average and in doing so, 
produce a performance that was above the Capital Market Line (CML) for 
essentially the same risk in the risk-return space (see Figure 1). 
 
Jensen’s formulation of the expected portfolio return was a beta adjusted risk 
premium to which was added the risk free rate plus an alpha representing the 
portfolio’s overperformance (see Figure 1): 
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which is the equivalent to: 
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Figure 1: Jensen’s Alpha 

 
By adding alpha to the expected return equation, Jensen was 
giving a measurable value to the portfolio manager’s skills. 

 
 
Not much can be made to change the average risk free rate of return. It has 
stood with an average of about 3.5% over the last century; as if that is all the 
market has to offer for idle funds. But Jensen opened up a door, in the sense that 
a portfolio manager that could generate some alpha was able to exceed the 
limitations of the CML. A talented portfolio manager could outperform the CML 
and this proportionally to his/her applied skills. In this sense, over performance 
was measurable and it had for name: alpha. It wasn’t specified which type of 
skills were applied (be it positive or negative), only that skills, talent, or luck (good 
or bad) could make a difference. When analysing the data, Jensen only found an 
average negative alpha (about -1.1%); meaning that the skills brought to the 
game by the average portfolio manager were detrimental to his performance.  
 
However, it should be noted that this minus 1.1% could be the results of such 
things as trading expenses, commissions and/or management fees applied 
against the portfolio. If this was so, then it would almost neutralize any alpha and 
establish that very little, if not no skill at all, was brought to the game as alpha 
would tend to zero. Technically, if Jensen was looking for portfolio management 
expertise across the financial investment industry; what he found was that only a 
select few could consistently exceed the averages while all others performed 
worst than average. It must have been disappointing for Jensen who, I think, 
wanted to positively prove that portfolio management skills mattered.  
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4. Return to the Future 
 
What ever market statistics we have for the past, they can only tell us what was. 
When considering the future, all these statistics paint a blurred and fuzzy image 
of what could be. It is only in general terms and using the conditional that one 
can express any equation related to future performance. The stochastic 
differential equations will still hold true, however no projection based on these 
equations would provide an explicit answer to how, when or what should be 
traded in the future. Already, some of the greatest tools have been made 
available to professional portfolio managers: computers, sophisticated software 
for data mining and analysis, gaming theory, artificial neural networks, genetic 
algorithms and anything else you can imagine; and yet, the average portfolio 
manager still does not beat the market averages; in fact, over 75% fail to beat the 
market average. 
 
Then, it might not be within the tools available that one should seek a solution to 
this portfolio management problem; maybe one should look at the trading 
methods used to outperform? If all the SPT literature point to a growth optimal 
portfolio as the most desirable, or most probable, outcome to long term portfolio 
management then it should come as no surprise that this optimal portfolio also 
tends to the weighted average of individual stock returns which in turn tends to 
the market average itself as ..samn →  

 
It is not with equations (2) or (3), which can also explain the future, that you can 
design a trading strategy that will significantly outperform the seemingly 
inescapable market averages. It is by designing a total trading system that can 
capitalize on the market structure itself while having as prime objective not only 
to preserve capital but also produce appreciable positive alpha. The whole 
process therefore becomes a quest for generating positive alpha. 
 
 

5. Designing a Trading System 
 
There we are: in need of designing a trading system. You have a mathematical 
model that explains pretty well the market you intend to trade. You have acquired 
knowledge of this market in statistical terms and have some basic equations as 
to the behaviour of stock prices. Your basic model tells you that there is a 
tendency for a long term upward drift to which is added a random variation 
component with an expected mean of zero (2). You have a whole lot of studies 
that tell you that the “efficient frontier” is in fact a boundary that is difficult to cross 
even by professional money managers. And your most probable outcome is to 
manage a portfolio that will tend toward the contact point on the CML tangent to 
the efficient frontier (see Figure 1). Technically, your only chance is to generate 
some alpha, but history has shown that portfolio managers fail, on average, to 
produce a positive alpha (Jensen 1968). 
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You have been shown the virtues of diversification, the merits of cutting your 
losses, the necessity of maintaining the capital under management above zero 
and that your portfolio should be self-financing. But all this does not design a 
system; it only provides some general guidelines. For example, in most cases, 
implementing stop losses will also tend to reduce overall performance. Thereby, 
one might be tempted to not use stop losses at all in order to obtain higher 
performance. However, we should consider this to be the cost to be paid as 
portfolio insurance and this cost can be seen in the systematic execution of stop 
losses. Capital preservation in all portfolios is the prime directive. Averaging 
down on stocks on their way to Chapter 11 is certainly not the way to achieve 
higher performance. 
 
Another way to represent a stock price model could be to express it as an initial 
holding value to which is added a constant drift (the slope of the regression line 
being the rate of return) plus the sum of all random variations, as in: 
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The cumulative sum of random variations will have for expected value: zero.  
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Equation (13), when evaluating the past, has an exact solution where all 

quantities are known: the initial stock holding, its average rate of return )(⋅ia  over 

the investment period t and the sum of all random fluctuations up to time t. 
 
But going forward, only the initial holding value can be known and this only if the 
time is 0=t . The long term projection of the future value of a stock is more than 

uncertain; as time elapses, the projected range increases. This is like saying that 
in 20 year’s time, a stock could be somewhere between $0.00 and $1,000.00 
with a 95% degree of accuracy. Not particularly useful. 
 
Therefore, in designing a trading system, one is confronted with many unknowns 
for which, even though we do have mathematical models that reflect the subject 
under study, they do not provide any means of accurately forecasting the future. 
To this, you add for objective to order all the stocks in a portfolio by rates of 
return and portfolio weights when you know quite well that there is no means to 
forecast future performance let alone performances in decreasing order. 
 
Notwithstanding, one can rebalance a portfolio at any future date based on what 
happened before and up to that point in time. In this sense, one can readjust 
portfolio weights based on generating functions on any criteria wished without 
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restriction. That this be profitable or not is another question. But the fact remains; 
one can readjust portfolio weights as long as the time is now. 
 
Building a portfolio that in time must supersede all others, being with the same 
stock selection or otherwise, will have to contend with some capital restrictions 
and constraints. 
 
First, trading at all times must be realistic: meaning that every single trade done 
during the life of the portfolio must be, not only marketable, but also executable. 
There is no flipping a million shares on the open or close every day. It means that 
every trade must be marketable; someone has to be present on the other side of 
the trade. Also, there is no selling at market of a large block of shares without 
affecting the price substantially. Slippage will have to be accounted for when 
trade size increases. A portfolio must stay with a positive holding value over the 
entire life of the portfolio in order to assure survivability, sustainability and self-
financing. A portfolio must or might need to be self-financing as a requirement. 
Another aspect is that the trading strategy must be sustainable, in the sense that 
at no point in time must its survivability, marketability or realistic execution be 
compromised. It must allow for adding or subtracting funds at any time under 
reasonable time constraints. 
 
Portfolio performance is simply the product of a series of returns as in: 
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where a single 1−=kb  will wipe out the entire portfolio no matter how long the 

series has been. Having a major portion of one’s portfolio in a single disastrous 
position can be very detrimental to the portfolio’s health and objectives.   
 
In the Stochastic Portfolio Theory (SPT), when looking at the market, total 
capitalization is considered as a premise to market weights. Thereby, a portfolio 

value πZ  has for instantaneous rate of change:  
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In SPT, the logarithmic change is used in order to express in linear form what is 
ordinarily an exponential function. So the differential equation for stock price 
process )(tSi  would be: 
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where )(tiγ  is the growth rate (average geometric rate of return) of the i-th stock. 

Integrating this last function would result in: 
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However, using the holding value )(tS  obfuscates some of the trading principles 

when the share count is made equal to one in order to consider simpler 
equations to model the portfolio. A share count of 1 means that the total 
capitalization of a stock is considered in the value process )(⋅S . This has for 

advantage that it becomes relatively easy to elaborate a benchmark or market 
portfolio as in: 
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where )(tiµ  represents the relative capitalization of the i-th stock compared to 

the whole market. And 1)(
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Clearly )(⋅µ  can be considered a portfolio process and can be called the “market 

portfolio”. The usefulness of this notation is that one can recreate a benchmark: 
the market portfolio, since ownership of )(⋅µ  has the same meaning as owning 

the entire market space. 
 
Comparing the relative performance of a portfolio to a benchmark or to the 
market portfolio can be useful. For a stock )(tSi  and portfolio η , the relative 

return process )(tSi  versus η  is defined as: ))(/)(log( tZtSi η . 

 
The portfolio M with weights mµµ ,...,1  defined by ))(...)(/()()( 1 tStStSt mii ++=µ  for 

mi ,...,1=  is called the market portfolio, and the weights iµ  are called the market 

weights or the market capitalization weights. 
 
The market portfolio mSStZ ++= ...)( 1µ , represents the combined capitalisation of 

all stocks in the market. Therefore, from )(/)()( tZtSt ii µµ =  it follows that 

))(/)(log()(log tZtSt ii µµ =  which represents the relative return of the i-th stock to 
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the market portfolio. For portfolios π  and η , the relative return process of π  to η  

can be defined as: 
 

))(/)(log( tZtZ ηπ        (18) 

 
The relative return process of portfolio π  to the market portfolio M would simply 

be: ))(/)(log( tZtZ mπ . 

 
So, there we have it: a mathematical model to represent stock behaviour, 
portfolios, indexes and markets where everything can be evaluated, compared 
and analysed. It all makes sense and theoretically can be used to better control 
one’s portfolio. As if by controlling the portfolio weights you had a solution to 
optimize a portfolio to any extent. Well, let’s see.  
 
 

6. Portfolio Weights 
 
When looking at past data, SPT provides an exceptional framework to analyse 
performance as well as relative performance to any benchmark. It is when 
looking at the future that the image gets blurred.  
 
Nevertheless, by controlling portfolio weights, one can design trading systems 
that correspond to specific philosophies. The Buy & Hold portfolio can be 
implemented with an initial weighting nSStZ ++= ...)( 1π  where the weights 

0)( ,...,1 ≥= niiw  are left to evolve as the market advances in time. Such a scenario 

will in time reorder weights where the stock with the highest appreciation will 
have the heaviest weight while that stock with the lowest performance will have 
the lowest weight and even might be 0 in cases where the company goes 
bankrupt. The Buy & Hold strategy therefore orders weights by relative stock 
performance as in equation (10). This means that what ever your stock selection 
for a portfolio, at terminal time horizon T, weights will have changed from maybe 
an initial constant weight to an ordered by return set of weights. 
 
By trying to maintain a relatively constant Sharpe ratio ( c=⋅)(θ ) over the life of a 

portfolio, weights will be periodically readjusted to rebalance the portfolio. In 
doing so, shares of advancing stocks will be partially sold as their prices go up 
and lagging stocks bought in order to rebalance the weights to maintain a 
constant Sharpe ratio. The method can at best produce average market returns. 
Its disadvantage is that the portfolio is gradually divesting itself of its best 
performers in the hope of achieving superior returns from the laggards. This 
sounds like: “let’s sell our best performers for a profit and increase our positions 
in our worst performers which will certainly rebound”. Worst performers (laggards) 
most of the time rebound, but sometimes, they don’t. And buying laggards has 
the same properties as averaging down and with the same pitfalls as trying to 
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catch a falling knife. At some point in time, you may be heavily invested in a 
stock going straight into Chapter 11. Maintaining a constant Sharpe ratio 
condemns a portfolio to the most probable average performance since that is 
what it seeks. 
 
Maintaining constants weights ( cwi =⋅)( ) throughout the life of the portfolio 

suffers from the same symptoms as the constant Sharpe ratio scenario. To 
maintain the weights constant, it is required to partially sell best performers and 
increase positions in the laggards; again in the hope of achieving higher 
performance. The method distributes the risk as if all stocks were equal which 
they are not. Again, since this portfolio seeks average performance, it will find it. 
 
Another method would be to maintain portfolio weights in the same proportions at 
the market capitalization weights. By mimicking the weights of the market 
average, one should expect to achieve returns close to the market average (see 
equation 9). The more one designs trading strategies to resemble average 
market performance, the more these objectives will tend to be realized. 
  
A portfolio ranked by performance might have a better chance of producing 
excess return, but most often this is done in a limiting way as to tend to the 
efficient frontier and therefore an average performance.  
 
However, procedures can be selected whereby a portfolio will exhibit improved 
performance from inception. It will be within the trading philosophy itself by 
applying specific trading rules that the portfolio will prosper. For instance, never 
trading stocks below $15.00 will have for distinction of eliminating almost 99% of 
stocks that might go bankrupt and that might have been part of a portfolio. This 
way, using this simple procedure, 300 basis points (3%) can be added to overall 
portfolio return. This hints to other procedures that can improve portfolio 
performance by controlling either the selection process and/or the portfolio 
weights. 
 
 

7. The Jensen Modified Sharpe  
 
The purpose of this paper is to show that portfolio weights should increase 
according to performance (11) (12). Rebalancing or readjustments should be 
done in favour of best performer and not against, and worst performers should 
have their weights decrease as their respective performances decrease. Doing 
so will generate a portfolio where not only weights will be ordered by relative 
performance (10) but also the stock’s holding values themselves.  
 

nSSStZ +++= ...)( 21π   ;      with      nSSS ≥≥≥ ,...,,, 21 , a.s. 

 
and where the “atlas stock” )(1 ⋅S  will have the highest holding value: 
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Furthermore, best performers should have reinforcement features to increase 
their weights, and all the while reducing the weights of the underperformers. This 
will have for tendency to increase relative weights towards the atlas stock. To 
implement this, it requires a different look at the SDE as proposed by the SPT. 
First, the price process )(⋅S  must be expressed for what it really represents: a 

quantity and a price, namely )()()( tPtQtS iii = . A quantity process of one for )(⋅Q  

can be useful in describing a benchmark where total capitalization can be 
considered as a surrogate in designing a market average or index. However, a 
quantity of one will hide the fact that the quantity of shares (the inventory on hand) 
can also change in time. And, that often, a portfolio of stocks can be considered 
as an inventory management system where inventory can go up and down. 
Second, when comparing an ordinary portfolio to the whole market, even the 
relation: 0)(/)( →tZtZ µπ  as the size of the market’s total capitalization )(tZµ  is so 

large. Third, the signal to noise ratio is such that the signal represents only a 
small fraction of the surrounding noise and the signal is almost completely 
drowned in this noise. Even though )(tZµ  will maintain its definition, the portfolio 

)(tZπ  will be adapted to reflect the actual quantity traded. Therefore, portfolio 

)(tZπ  will from now on be defined as: 
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Total cost of acquired shares can be expressed as: ∑
l

ii tPtQ
1

)]()([ , the sum of all 

shares bought over time at their respective prices (including multiple purchases 
on the same day). While the current value of shares on hand can be expressed 

as: ∑
=

⋅
l

i

ii tPtQ
1

)()]([ : the sum of accumulated shares over time valued at the 

current price. Only the accumulation or long side of the portfolio equation will be 
considered in this paper as the aim is only to show that performance can be 
improved by applying a Jensen modified Sharpe methodology to trading.  
 
Adding a day trading component to this methodology could also help improve 
performance just as adding a derivative component; however, neither will be 
covered for the time being. The purpose of the paper is only to show that using 
simple procedures can help escape the limitations of the efficient frontier. 
 
So, as a general expression, the total profit generated for this long only scenario 
is simply the difference between current holding value and its total cumulative 
costs to acquire the said shares: 
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The portfolio rate of return )(⋅πb  can be considered as total profits over total 

cumulative costs (invested capital): 
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The return process )(⋅ib , when the quantity is made equal to one, would results in: 
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       (22) 

 
as should be expected. But this hides what could be done with the quantity as 

time evolves. Equation (22) could also be expressed as t

ii btb )1()( += ; an 

ordinary compounded rate of return. Now consider what would happen when one 
puts the quantity of shares on a compounded rate as in: 
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then )(tgi  becomes the appreciation rate of the number of shares in the stock 

inventory. Expanding inventory as price appreciates would result in: 
 

t

i

t
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To do this would require a slight modification to equation (6) which is restated 
here: 
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with the desired modification to )(⋅α , this would result in: 
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where τ  is the Jensen alpha appreciation rate. This means that the process )(⋅θ  

can be put on an exponential curve. The implications can be far reaching for a 
portfolio manager. From an historically static measure of reward to risk ratio, 
he/she can now look forward to a more positive outlook where the measure of 
the skill level increase in time all by applying procedural techniques to enhance 

performance. The alpha accelerator: t)1( τα + , is almost entirely responsible for 

the accelerating Sharpe ratio. 
 
In log differential form, this would translate equation (16) in to: 
 

∑
=

++=
n

i

i

niiii tdWtdttttSd
1

* )()()]()([)(log σαγ    (26) 

 

where )(
* ⋅iα  is the logarithm of the added appreciation rate resulting from the 

share accumulation program over time. This changes completely the limitations 
of the CML as shown in Figure 1; since Jensen’s alpha )(⋅α  is being replaced by 

an exponential function: 
 

 t

iii t )1()(
* ταα +=  

 
The possibility of having an exponential Sharpe ratio changes the nature of the 
game in a big way. And since the Jensen accelerator can be controlled, it can 
provide a new dimension to skills applied to portfolio performance. 
 
This is the first time to my knowledge that the Jensen alpha formulation is 
improved since 1968. A new dimension is being added, one can not only produce 
positive alpha, but can do so on an exponential curve; it has for secondary effect 
an exponential Sharpe ratio (see Figure 2). Never in the past has anyone every 
expressed such a statement. 
 
The acceleration rate iτ  of individual stocks has for origin )()()( tbtkt iii =τ  with 

0)0( =ik ; and where ik represent the fraction of generated excess equity being 

reinvested. Thereby, )(
* ⋅iα  forms part of a positive portfolio feedback loop in 

equation (26). 
 
To implement such a trading strategy requires that )(⋅ib  determines the rate of 

ascent of a subordinator function following a Lévy process which has drift, 
diffusion and jump components; a continuous Lévy process being a Brownian 
motion with drift. 
 
Subordinators can serve as goal oriented conditional performance objectives 
functions; akin to portfolio behavioural regulators. They can guide and control 
certain desirable portfolio parameters and become portfolio generating functions. 
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The feedback loop created by )(* ⋅iα  has for single mission to amplify portfolio 

output, and this translates in to: increasing performance exponentially.  
 
 

Figure 2: Modified Sharpe Ratio 

 
 
The Sharpe ratio with an alpha accelerator shows improvement 
over time of the reward per unit of risk. Management skills do 
matter. 

 
 
With the use of subordinator functions, behavioural regulators, enhancers and 
safety valves, one can design a portfolio having for objective the realisation of 
equation (25). Tests over the 50 stocks by 1,000 weeks showed an increasing 
Sharpe over the whole 19.2 year investment period (see my previous paper). The 
tests ran on 100 stocks by 2,000 weeks show that the exponential Sharpe tends 
to taper off between years 22 and 26, but nevertheless, stays at a high value. 
One of the major reasons for this phenomenon might be that no replacement was 
provided for bankrupt companies within the selected group of stocks, and 
therefore, fewer and fewer stocks were effectively responsible for total 
performance as time advanced. It is understandable that one might not be able to 
design an exponential Sharpe ratio that could be maintained indefinitely. Tests 
with replacements have not been implemented yet. However, having 
replacement for bankrupt companies, or increasing the number of stocks as time 
evolves, would have for effect to further increase performance as a lot of excess 
equity buildup goes unused as time progresses. 
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Figure 3: Controlling Lévy Process 

 
A typical subordinator function controlling the evolution of the 
alpha modified Sharpe ratio. It remains a Lévy process with drift, 
jumps and Brownian motion. 

 
 
The portfolio generating function will be a Lévy process with jumps, random 
motion and drift. These Lévy processes will try to maintain an ordered weighting 
scheme based on relative performance of each individual stock. Thereby, trying 
to maintain equation (12) as an ordered set in weighting )(⋅π  and return )(⋅b .  

 

)()()( tbttb ii

n

i

ππ ∑=       

 
The stock accumulation process )(⋅Q  being controlled at the portfolio level will 

distribute excess equity resources by reinforcement in the order of individual 
stock performances. Higher performing stocks will achieve the highest weighting 
in the portfolio while non-performers will not only be starved of capital but will 
also have their relative weights diminished. 
 
The use of subordinator functions as controlling elements for the behaviour of 
portfolio weights enable the user not only to preset, but also, to modify weights in 
time according to either changing environmental conditions or changes in the 
objective functions. As if one could control and regulate performance by 
increasing or decreasing controlling functions. 
 
Under this weighting structure, it is not known which stocks will have the heaviest 
weights at terminal time T, only that at terminal time T, stocks will be ordered by 
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weights according to their relative performance. As an illustration of the 
phenomenon, see Figure 5. 
 
 

Figure 4: Weighting Lévy Process Control 

 
A typical weighting subordinator function controlling the evolution 
of portfolio weights. Another Lévy process with drift, jumps and 
Brownian motion. 

 
 
Position sizing is a major concern throughout the portfolio’s lifetime. It’s by 
controlling the ongoing stock inventory within the limits of the subordinator 
functions and regulators that the portfolio can thrive and exceed the Buy & Hold 
methodology by a wide margin. Initial positions in the selected stocks as well as 
ongoing incremental bets will determine overall portfolio performance. This 
method does not suggest having all initial weights of equal value nor does it 
recommend having the same incremental bets for all stocks. Initial bets should 
be place in order of expected return and/or any belief which can provide some 
degree of conviction in one’s trading methodology. Incremental bets could easily 
follow goal oriented subordinator functions in order to better use excess equity 
buildup as it progresses in time which in turn would have for effect to increase 
performance. 
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Figure 5: Portfolio Weighting Distribution 

 
 
The weighting distribution under the subordinator controlling 
functions might be known at portfolio inception. However, at 
terminal time T, weights will be ordered by bet size and 

performance. 

 
 
From logarithmic equation (26), which is recalled here:  
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one could perform integration; this would transform equation (17) in to: 
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where )(* siα can be seen to push performance higher. The portfolio growth rate to 

which is added the alpha modified Sharpe growth rate will remain within the self-
financing and survivability constraints as: )(tZπ > 0, for [ ]Tt ,0∈ a.s.; even though 

some of the weights might drop to zero (as in bankrupt companies for instance). 
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8. The Testing Environment 
 
How should an accelerated alpha portfolio be tested without introducing biases? 
What would constitute a testing environment where no tricks, no statistical 
aberration or specially selected examples could be used to make the point? 
 
Biases can have for origin: the stock selection process itself, the selected period 
under test, the over-optimization and/or curve fitting to the desired scenario, the 
survivorship bias, the use of faulty data not to mention peeking. Using a Monte 
Carlo method would simply average out over the stock selection while randomly 
selecting stocks might not include delisted or bankrupt companies. In order to 
avoid all forms of biases, a randomly generated trading environment would be 
used. Result: no optimization possible, no curve fitting, no removal of undesirable 
or misbehaved stocks and no forecasting possible. By doing this, the desired 
testing environment would be unbiased; it would also be quite severe as every 
single test would be different and unique from one to the next. The system would 
have no memory of past configurations, stock selections and price behaviours. 
Every scenario would be different as if having its own and unique time line. 
 
The first series of tests were based on 50 stocks over 1,000 weeks (about 19.2 
years), while the second set was on 100 stocks spanning 2,000 weeks (38.4 
years). All the data was randomly generated: initial value, drift and random price 
variations. Stock prices were normalized to an initial value of 20 without loss of 
generality in order to treat all stocks the same. See original paper Alpha Power1 
for the 50 by 1,000 week tests.    
 
As an example see Figure 6 where a sample of 20 stocks is shown - in order not 
to cloud the chart - with their linear regression lines from random origins to 
random terminal values. When the data is normalized as in Figure 7, all 
regression lines appear to fan out from the same origin. However, note that the 
rate of change in both charts is the same. 
 
Figure 7 is comparable to Figure 11 in Alpha Power1; and from both figures, it is 
clear that the highest sloping linear regression line is the most desirable stock. 
This stock, the “atlas stock” would be the only stock to invest in should we have 
known before hand that it would be the best performing stock of the investment 
period. However, nothing can help us determine this in advance. 
 
Not being able to pick the atlas stock for your portfolio, the next best thing would 
be to select a number of stocks and play the game as described in the horse 
race beginning on page 30 of Alpha Power1. The description of the bet 
management system for the horse race does present the same problem as 
managing the relative performance of each stock in the selected portfolio. 
____________ 
¹ Alpha Power: Adding More Alpha to Portfolio Return. Available free from: 
http:/www.pimck.com/gfleury 
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Figure 6: Random Linear Regressions 

 
 
The distribution of linear regressions appears as an array of sticks 
thrown on a table. 

 
 

Figure 7: Normalized Random Linear Regressions 

 
 
Normalizing the data in Figure 6 makes the distribution of random 
lines to fan out from the same origin. The rate of change is the 
same in both figures.  
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On the first series of tests, each run was like selecting 50 stocks at random from 
an unlimited stock universe with no replacement. Each price series having 
independent paths with the possibility of up to 28% of the group going bankrupt 
in which case the then current holdings would be forfeited (lost). It should be 
noted that this level of bankruptcy is much higher than what could be expected 
playing the real market. No way of knowing which stocks would outperform, go 
bankrupt or just produce about average returns. Each test would be a unique run 
so that no two price series could ever be the same since no seed was being used 
in the random number generator. Hundreds of runs were performed in order to 
gather statistics and better understand overall behaviour since each run was 
unique, unpredictable and unduplicatable. 
 
No biases could develop under the imposed trading conditions: no over 
optimization, no curve fitting, no selection bias, no indicator preference, no 
indicator optimized value, and no same stocks in all tests. There was no 
survivorship problem either as all would be bankrupted stocks were part of the 
selection and could not be avoided, discarded or ignored. And no peeking at 
future data in any form was permitted. Each run being as if generating a probable 
future outcome which had no memory of its past and no knowledge of what was 
to come; as if each test had its own unique time line. 
 
 

Figure 8: Random Stock Price Series 

 
 
The graph shows a typical 1,000 period randomly generated price 
series with drift. The white noise or random component can be 
much more significant than the signal. 

 
 



© Guy Roland Fleury, November 10, 2008    Last update: 17/03/2009                                           Page: 25 

This resulted in an Excel file with some 500,000 cells populated with inter-related 
functions and equations. A simple re-calculation request would run a totally new 
and different test with the then set of controlling functions and parameters. Efforts 
were made to simulate a market as closely as possible. Price variations were 
made to follow a Paretian distribution (meaning allowing fat tails) rather than 
using a normal or Gaussian distribution. An average secular trend was set to 
approximate the 10% long term historical market average with dividend 
reinvestment. This amounted to an average of about $0.02 drift per day with no 
ability to profit short term due to the high noise level from the random fluctuations. 
Because of the fat tails, gaps and price jumps could occur in any of the price 
series and at any time (see Figure 8). 
 
If the subordinator functions, regulators, amplifiers and safety valves were to be 
of any use, they would have to survive and thrive in this hostile trading 
environment. 
 
 

9. The Jensen Modified Sharpe II 
 
The Jensen modified Sharpe ratio can have a major impact on a trading strategy. 
However, it is not all trading strategies that can benefit from it. The design 
implications have long term portfolio horizons as backdrop; this is not a short 
term trading methodology. 
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From restated equation (25) above, the accelerated alpha component with also 
add an exponential component to the Sharpe ratio.  
 
Having that )(⋅θ  can be a portfolio generating function will imply that the 

generated portfolio will be on an exponential curve as well. It then becomes a 
matter of how much alpha and at what rate can the portfolio grow. And what are 
some of the controlling parameters? 
 
Trading procedures can be preset to a generalized behavioural pattern where the 
outcome might not be known but where the conditional response to market 
variations have all been predetermined. This trading “philosophy” then dictates 
the generated positive alpha and the portfolio manager can determine the 
sustainable rate of growth based on available capital and risk constraints. 
 
This goes beyond Stochastic Portfolio Theory where a barrier is put in place 
called the Growth Optimal Portfolio which resides on the efficient frontier and 
which is generated by equation (4): 
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)()()( tbtt =θσ        

 
The modified Sharpe ratio jumps over this barrier; not as a simple incremental 
improvement but with an exponential function. It leaves behind the “efficient 
frontier” to expand performance by removing the restraints imposed by other 
portfolio rebalancing methods. Equation (25) represents only a small incremental 
step to the existing Sharpe ratio; it builds on what is there by providing a better 
use of excess equity buildup. Naturally, not adding this exponential to equation 
(25) would reduce the expression to equation (4), the usual expression for the 
Sharpe ratio.  
 
 

10. The Trading System 

 
The “instantaneous” rate of change of the portfolio can be expressed as: 
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 (28) 
 
which results from the weighted sum of the relative change in value of each stock. 
This change in value can come from the average price appreciation and/or the 
average quantity increase to which is added the cumulative sum of all random 
price variations. Both forces are at work; and for a positive alpha, it is clear that 
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The portfolio logarithmic rate of return: 
 

)]()()[()( * ttbttb iii

n

i

αππ +=∑       (29) 

 
results from the weighted sum of the combined rates of increase. While the 
portfolio volatility would remain the weighted sum of individual stock volatility: 
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From equation (24), we could also rewrite the portfolio equation as: 
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where the price is made to appreciate at t

ib )1( +  and the quantity at t

ig )1( + . 
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The portfolio value could also be expressed as: 
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where the total portfolio value is the sum of the initial position established in each 
stock plus the current value of all stock holdings minus the total cost of acquiring 
the said shares, or alternatively, the value of initial holdings + total profits. The 
total profit expressed only as rates of return could be written as: 
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Thereby the expression for the portfolio would be: 
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where the initial positions in the market grow in quantity and in price. As a simple 
example, consider a 10% rate of return with a quantity appreciation rate of 5%:  
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compared to the simple Buy & Hold strategy which would result in: 
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a 265% performance improvement. Increasing the quantity at the same rate as 
price (0.10) would result in: 45.2593: a 672% improvement over the Buy & Hold – 
rising to an overall portfolio return of 21%. It therefore becomes desirable not to 
ignore that the quantity on hand as well as the price can appreciate in time. And 
when one considers an alpha of 3 to 5%, one could push overall performance 
somewhere between 27 to 31%; and this is not yet a limitation, performance can 
improve still further as )(tgi  can itself be a time varying function. 

 

The feedback loop generated by the alpha accelerator t)1( τα +  will increase 

portfolio performance as part of the excess equity build-up is being used to 
reinforce the desirable objective: achieving higher performance. This also 
provides for a better use of equity as the portfolio evolves in time. By controlling 
position size by relative price performance, we can increase overall portfolio 
return. 
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11. Implementation 
 
Only a simple and trivial scenario will be considered as the aim is not to give a 
complete or ultimate trading methodology but to show that one can increase 
performance simply by applying the alpha accelerator as described in the 
previous sections. 
 
Implementing a Jensen modified Sharpe ratio portfolio requires to setup initial 
trading conditions as well as ongoing controlling functions: subordinators, 
regulators, amplifiers, enhancers and safety valves. This is done by determining 
initial stock allocation to the selected set of stocks. The stock selection process 
itself can be any reasonable method of choice. Since the long term view is the 
prevalent underlying theme of this methodology; stocks being selected should 
have positive expectancy of survival; this does not mean a survivorship 
guarantee, only that one has reasonable assumptions for longevity. Forget penny 
stocks and look for stocks with future positive prospects. It also does not mean 
that the selection you make will survive the whole investment period, only that 
you are trying to put all the chances on your side by selecting what you think 
might survive and prosper. Stocks that fail can always be replaced as long as the 
remaining portfolio value is above zero. Also, the impact of a bankrupt stock will 
greatly be reduced as the number of stocks in the portfolio increases; this being 
the main reason for performing tests on 50 stocks in the first place. This naive 
diversification represented an implicit protection. 
 
Once a selection is done, it is time to set initial betting conditions. This will be 
done for each stock in the selection; and the same procedure would be applied 
when adding new stocks to the list to replace failed ones. Since the whole 
procedure plays the diversification game, one could normalize all selected stocks 
in order to treat them all the same and then divide initial capital according to 
capital requirements for each of the stocks. Or inversely, divide available capital 
into the number of stocks in your selection. This allocation will be done later but 
for now we can still set the theoretical framework of the procedure.  
 
Let the following represent the sum of initial positions: 
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where 

i
k0  is a multiple of the initial trade basis 

i
q0 . The trade basis can be any 

quantity of shares from one to as high as capital permits. However, too low a 
trade basis is not necessarily recommended as commission costs may become a 
major impediment to performance. Trade basis should preferably start at 100 
shares or in tradable increments of 100 in order to avoid odd lots. This is not to 
say that a trade basis of 10 or 21 shares will not work, it will, but performance will 
also be commensurate. Only part of the available capital is being invested at 
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inception; the stock weights will sum to 1 only for the invested portion of the 
portfolio. Remaining or unused funds will stay in the bank earning )(⋅r . The basis 

for determining 
i

k0  can be any method you wish but it was found to be more 

useful to make it proportional to a conviction or belief system. The more convince 
you are that a stock is going to prevail (survive), the higher its relative trade basis 
should be. Also, the higher the forecasted or anticipated rate of return, the higher 
)(⋅k  should be as well. The trade basis can also be changed in time to adapt to 

trading conditions or changes to objectives functions or forecasts. 
 
Various indicator functions then take over control of the emerging portfolio. 
These indicator functions have for mission to set guiding barriers in order to lead 
the portfolio value in the direction of the desired goals (capital appreciation).  
 

bq  shares are added to the portfolio when indicator conditions are met. The 

quantity bought will depend on the indicator condition, the conviction setting and 
the trade basis for adding shares )()( ⋅⋅ qak . 
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Since an initial bet can be a small fraction of initial capital, maybe something in 
the order of 0.1% of available capital, a price decline after initial setup will only 
have a minor impact on overall portfolio value. Even a 50% drop on one stock 
might only represent a 0.05% drawdown in portfolio value. The sum of all stock 
acquisitions over the investment period will be: 
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The capital requirement to execute equation (33) can be predetermined and can 
have for structure a general binomial function such as: 
 

cbxax ++2    
 
where the maximum of its derivative will represent the minimum required capital 
to execute the preset trading policy. The whole betting system’s equation will 
determine the outcome. 
 
As the share accumulation progresses, more and more capital will be required up 
to its maximum from which, excess equity buildup will take the forefront. Figure 7 
shows capital requirements over the investment period. The positive side 
representing money put in the market while the negative side shows money 
taken out of the market. The regression equation has a 0.99 correlation 
coefficient which means that the binomial fit is good and explains most of the 
data. 
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A relatively small initial position may be taken, and then, the stock has to prove 
itself worthy before any additional shares can be purchased. And after having 
reached its maximum capital infusion, it is required that the market itself pays for 
it all...  
 
As a simple trivial example – which is part of a family of such equations - I will 
use the following deterministic portfolio driving function: 
 

0

2 )0772.1(295.1)235.1(
2

Re Paixiax
a

qCap qqqq

q −+−+=    (34) 

 
where qCapRe  is the required capital, x  the trade level (price differential), qi  the 

initial quantity traded and qa the added or ongoing quantity that serves as trade 

basis. The idea here is to provide a simple example, where some of the 
controlling and safety functions have been omitted in order not to cloud the issue.  
 
 

Figure 7: Capital Requirements (Portfolio) 

 
 
The average capital required to implement the modified Sharpe 
ratio strategy will reach a maximum in the early stage, taper off 
and then will become self-sustaining. Amounts above zero 
represent capital put in the market while negative values show 
amounts taken out of the market. The regression line shows that 
this is a power function which is characterized by its initial stock 
position plus its ongoing additional bets. 
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The total capital requirement is all predetermined by equation (34) which also 
represents the ongoing betting system. This betting system (trading strategy) is 
characterized by its initial price, the initial quantity of shares bought, and the 
incremental bets in relation to the incremental trade level reached. The derivative 
of qCapRe  will provide the trade level at which the minimum capital requirement 

is met to execute the preset scenario: 
 

0235.1
Re

=−+= qqq iaxa
dx

qCap
d      (35) 

 

where  )35.12(
1

qq

q

ai
a

x −=  as determined by the betting strategy; and 0PPx t −= . 

 
 

Figure 8: Capital Requirements (first 50 levels) 

 
 
The regression function with a correlation coefficient of 1 show 
that the regression fits the data. The regression equation 
determines the betting system used. 

 
 

Amounts above zero represent capital put in the market while negative 
values show amounts taken out of the market. The regression line 
shows that this is a power function which is characterized by its initial 
stock position plus its ongoing additional bets. 
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Figure 9: Capital Requirements (first 150 levels) 

 
 
The capital required to implement the modified Sharpe ratio 
strategy will reach a maximum in the early stage, taper off and 
then will become self-sustaining.  

 
 
For the simple strategy presented in Figures 8 and 9, and with parameters set: 

100 =P , 200,1=qi , 300=qa ; this will translate into a minimum capital requirement 

of about $15,900. The minimum required capital occurred at level x = 14.5 which 
is when the derivative of the required capital function equalled zero. At x = 140, 
the future value would amount to: $3,087,000 or some 30% compounded return 
over a 20 year period while the Buy & Hold with the same initial capital would 
have resulted in only $283,000 equivalent to a 14.5% return on invested capital. 
 
Since equation (34) predetermines the outcome of this trading strategy, one 
could change initial and ongoing trade conditions to scale performance to a 
desired level based on available capital. For example, having the initial quantity 
set to: 100,2=qi , and with incremental bets at: 600=qa  would require $31,500 as 

initial capital to achieve at level x = 140 a stock holding value of $6,132,000 while 
maintaining a 30% compounded return on invested capital over a 20 year period. 
The Buy & Hold over the same period and with the same initial capital would 
have returned $472,520 or a 14.5% as in the previous example. Doubling initial 
investment doubled final value thereby providing a scalable trading strategy that 
can outperform easily the Buy & Hold. The same reasoning would be applied 
should one wish to scale by 10 or more or scale to only a fractional share count.  
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Again from this simple example, one could extract the generated profits from the 
trading policy adopted. This would be expressed only in terms of initial price, 
initial bet, ongoing bets added as trade basis and trade level reached. 
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Let ip  equal one for now as to not cloud the issue. From the first scenario above, 

the total profits would result in the following binomial equation (see Figure 10): 
 

900750150 2 −+=∑ xxprofits  

 
where ot PPx −= . To extract more profits, it is only required to scale the above 

equation which will also increase the capital requirements accordingly. The 
number of shares acquired during the process can be evaluated using: 
 

qotiqt iPPpaQ +−=∑ )(      

 
which in this example, at level 140, would amount to 43,000 shares acquired 
over the 20 year investment period. When considering that one can buy shares 
with commissions as low as $1.00 per hundred shares, total commissions to 
realize the above scenario would amount to about $430.00 while the method 
would have produced total profits of about $ 3,087,000 or some 30% 
compounded return over the 20 year investment period. Commissions can really 
be considered a trivial matter when using this particular trading methodology. 
 
Equation (34) does indeed completely characterize this simple trading philosophy 
where all trading actions are predetermined. Any variation to this basic equation 
will also result in a predictable outcome. What is the minimum required capital to 
achieve $ 10,000,000 at the 140 level? Answer: $52,500 with optimal initial 
shares bought 500,3=qi  shares and with additional bet size set at 000,1=qa . 

Buying 1,000 additional shares as each trade threshold is reached is more than 
marketable and executable. This scenario would still produce as before over 30% 
compounded should the 140 level be reached at year 20. 
 
From a simple trading strategy where part of the excess equity buildup is used to 
reinforce the existing position at predetermined levels, it was shown that one 
could achieve higher performance without having to increase risk noticeably to 
do so. Equation (25) characterizes the trading philosophy. Whole families of 
curves as equation (34) can be designed and/or implemented. 
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Figure 10: Total Profit Generated (first 150 levels) 

 
 
From the trading policy adopted, the sum of total profits originates 
from the current value of stock holdings minus the cost to acquire 
the said shares. 

 
 
From the general background of SPT where every element tries to explain a 
quasi-random phenomenon, in occurrence: stock price movements, it was shown 
that one can design a deterministic trading methodology which will not only beat 
the Buy & Hold strategy, it can do so with little added risk. Not only that, but it is 
implied that whole families of such portfolio generating equations exists. 
 
Some of the advantages attributable to the methodology used in accumulating 
shares over the investment period would be:  
 

a) only a relatively small initial investment is require as one 
can start with a small to zero initial commitment thereby 
limiting initial market exposure; since less than 5% of total 
equity can be put on initial bets, even with an average stock 
decline of 50%, it would represent only a 2.5% portfolio 
drawdown and a 0% decline should no initial positions be 
taken. 

 
b) since shares are added only when the price is moving 
higher, one can always exit on this new high with all 
accumulated profits.  
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c) having a totally pre-determined trading plan with pre-set 
quantifiable goals helps to stay more focus in the face of 
market vagaries; you know where you want to go and you 
know how to get there, you just don’t know when you will get 
there, but you can wait. 
 
d) knowing in advance that the overall rate of return will be 
much higher than the Buy & Hold strategy provides more 
reasons to stay on course and reap the benefits of this 
progressive trading method. 
 
e) the method can be scaled by the initial position taken and 
ongoing bet size within the capital and risk constraints.  
 
f) stop losses are executed on small bets when negative and 
as trailing stops when profitable; meaning that when bets are 
larger, one can decide to keep most of the generated profits. 
This is not the same as accepting a huge loss. The decision 
process is very different. 
 
g) the method can be regulated by changing objective 
functions or modulated by market conditions.  
 
h) the method plays the diversification game and lets the fittest 
win the race. 

 
The Jensen modified Sharpe ratio is a basis for a trading philosophy where 
instead of trying to outguess the market, one simply adopts a strategy to extract 
what he wants from the game. 
 
 

12. On the Growth Optimal Portfolio 
 

Where is the Growth Optimal Portfolio )(* ⋅π  when )(* ⋅θ  (its generating function) 

goes from linear to exponential? 
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Under SPT )(* ⋅θ  will generate a growth optimal portfolio )(* ⋅π  that will tend 

asymptotically to the market average as long term time horizons are considered. 
Since, with SPT, on long horizons, all terms of equation (5) are relatively 
constant, we could use secular averages as constants to roughly express )(⋅θ : 
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However, when considering the Jensen modified Sharpe ratio as in equation (36), 

)(* ⋅θ  is no longer a relative constant that can fluctuate within boundaries. It has 

acquired an exponential component, a feedback loop, which will tend to increase 
the “optimal portfolio” exponentially (see Figure 2).  
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Furthermore, *α  and *τ  could themselves be time varying functions modulated 
by market conditions or goal oriented functions. Leverage and margin can also 
be put to use in an effort to extract even more from the markets, just as adding a 
day trading component and/or derivative component would tend to increase 
performance further. 
 
Alpha can be generated by the simple use of part of the excess equity buildup 
generated as prices rise. Therefore, this method actually relies on buying shares 
incrementally as prices increase in time. And its added performance or 
overperformance simply originates from the use of the excess equity buildup. 
 
Equation (16) in my previous paper1 was its corner stone and did illustrate some 
of the controlling variables in the stock accumulation program. It was at the heart 
of my trading philosophy which transformed the simple Buy & Hold: 
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into a stock accumulation function with behavioural reinforcement of desirable 
characteristics: 
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The above equation is not a forecasting function but a predetermined inventory 
control function. It becomes how the quantity of shares on hand is being treated 
that counts. It’s the position sizing over the whole set of selected stocks that 
finally matters. It’s how the weights are shifted in time to favour the best 
performers while at the same time starving underperformers. At its most basic; 
the equation is a glorified Buy & Hold equation with the added twist of reinvesting 
in additional shares part of the accumulated excess equity under predetermined 
goal oriented functions which favour top performers. 
____________ 
¹ Alpha Power: Adding More Alpha to Portfolio Return.  
Available free from: http:/www.pimck.com/gfleury 
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It is also an equation which has a deterministic behaviour and where someone 
can preset objective functions based on capital and risk constraints. It’s output, 
the cumulated total profits can at times be express as a simple binomial equation 
as in the example presented above, such as: 
 

CBxAxprofits −+=∑ 2       (38) 

 
where A, B and C are functions of the betting system being implemented and 
require as information the initial bet size, the ongoing bet size (trade basis), its 
initial price and the price level reached. Without the betting system implied by this 
methodology, equation (38) would reduce to: 
 

Dxprofits =∑        (39) 

 
where D  would be the initial shares bought qi ; and this in turn would be just 

another expression for the Buy & Hold. The ability to convert a linear holding 
function to an exponential one through a simple deterministic procedure remains 
not only feasible but a desirable characteristic of the betting system implemented. 
 
From the capital constraints, a portfolio manager could design what is desired 
from a price movement, determine his/her behaviour in response to these price 
changes and set the betting strategy accordingly. Resolving the betting system’s 
equation (34), which sets the minimum capital requirements for execution, may 
seem the only requirement, but there is more. The betting system must be 
determined without knowledge of what is to come. The method, even though 
effective, will still not know what is coming as future price movements. But, 
nevertheless, it will make every attempt to maximize the output of the equation, 
in the sense that what ever the set of stocks thrown in the portfolio, it will make 
the best of it and produce returns that will exceed the Buy & Hold policy.  
 
 

13. Conclusion 
 
From the backdrop of SPT, stock price, portfolio and market processes were 
represented as Stochastic Differential Equations. SPT is a complete market 
model, in the sense that it can represent any stock, market average, index or 
portfolio.  
 
From equation (17), an alpha accelerator was added to transform this equation in 
to equation (27). The alpha accelerator has for effect to increase performance 
and transform a relatively constant historical Sharpe ratio into an exponential one. 
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From what might be considered only a minor addition ( )(* siα ) to equation (27); it 

turns out to have a major impact as it enables a portfolio to show an exponential 
Sharpe. Even with the trivial example provided, it was shown that one can design 
a better performing portfolio simply by reinvesting part of the excess equity 
buildup under controlled and deterministic inventory management procedures. 
Equation (27) is the corner stone of this paper, but all it does is restating in 
another form equation (16) in my previous paper. 
 

 
 
The real innovation is still in my previous paper where for the first time the 
Sharpe ratio was given an exponential form (see equation (25)). 
 
The methodology aims to extract from the market following the capital 
requirement equation which sets the trading rules to achieve the preset profit 
objectives. It then becomes a matter of following the trading rules and possibly, if 
desired, to modulate equation parameters to changing objectives or market 
conditions. In essence, you design what you want to take out of the market and 
then let the market deliver on your terms. 
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